

A262202


Number of divisors d  n such that d^2 < n and d^2 does not divide n.


2



0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 0, 1, 1, 1, 1, 0, 1, 1, 2, 0, 3, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 4, 0, 1, 1, 0, 1, 3, 0, 1, 1, 3, 0, 2, 0, 1, 1, 1, 1, 3, 0, 2, 0, 1, 0, 4, 1, 1, 1, 2, 0, 4, 1, 1, 1, 1, 1, 3, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,24


COMMENTS

a(n) = 0 if n is a prime power.
From Michael De Vlieger, Sep 15 2015: (Start)
Let k be a divisor d  n such that d^2 < n and d^2 does not divide n.
a(n) <= A010846(n), as any k is regular to n, i.e., k is a product less than n of the prime divisors of n.
a(n) <= A045763(n), as any k neither divides nor is coprime to n.
a(n) <= A243822(n), as any k is a "semidivisor" of n, i.e., k is a product less than n of the prime divisors of n that do not divide n.
(End)
a(n) = 0 if and only if n is a prime power (A000961).  Robert Israel, Sep 22 2015
From Robert Israel, Oct 22 2015: (Start)
a(n) = 1 if n = p^i * q^j where p and q are distinct primes and 1 <= i,j <= 2, i.e. n is in A006881, A054753 or A085986.
This appears to be "if and only if". (End)


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000


EXAMPLE

a(6) = 1 because (1, 4, 9, 36) are squares of divisors of 6 and only 4 is proper nondivisor of 6.


MAPLE

f:= n > nops(select(t > (t^2 < n) and (n mod t^2 <> 0), numtheory:divisors(n))):
map(f, [$1..100]); # Robert Israel, Sep 22 2015


MATHEMATICA

f[n_] := Block[{d = Divisors@ n}, Select[d^2, And[Mod[n, #] != 0, # < n] &]]; Length@ f@ # & /@ Range@ 120 (* Michael De Vlieger, Sep 15 2015 *)


PROG

(PARI) a(n) = sumdiv(n, d, (d^2 < n) && (n % d^2)); \\ Michel Marcus, Sep 15 2015


CROSSREFS

Cf. A000961, A006881, A010846, A045763, A054753, A085986, A243822, A143731.
Sequence in context: A275851 A067432 A192174 * A284413 A323879 A129308
Adjacent sequences: A262199 A262200 A262201 * A262203 A262204 A262205


KEYWORD

nonn


AUTHOR

JuriStepan Gerasimov, Sep 15 2015


EXTENSIONS

Definition and a(80) corrected by Charles R Greathouse IV, Sep 15 2015


STATUS

approved



